Composition of analytic paraproducts

نویسندگان

چکیده

For a fixed analytic function g on the unit disc D, we consider paraproducts induced by g, which are defined Tgf(z)=∫0zf(ζ)g′(ζ)dζ, Sgf(z)=∫0zf′(ζ)g(ζ)dζ, and Mgf(z)=f(z)g(z). The boundedness of these operators various spaces functions D is well understood. original motivation for this work to understand compositions two operators, example Tg2,TgSg,MgTg, etc. Our methods yield characterization large class contained in algebra generated acting classical weighted Bergman Hardy terms symbol g. In some cases it turns out that property not affected cancellation, while others requires stronger more subtle restrictions oscillation than case single paraproduct. Pour une fonction fixée analytique dans le disque unité considère les paraproduits analytiques induits par définis et Sur divers espaces de fonctions conditions pour qu'un opérateur soit borné sont bien connues. La originelle ce travail est comprendre quand est-ce que des deux ces opérateurs, exemple etc, bornées. Nos méthodes donnent, en du symbole caractérisation opérateurs bornés grande classe d'opérateurs contenus l'algèbre générée agissant sur classiques à poids. Dans certains cas, il s'avère cette propriété n'est pas affectée simplifications, alors d'autres, elle nécessite l'oscillation plus fortes subtiles cas d'un seul paraproduit.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composition of Haar Paraproducts: the Random Case

When is the composition of paraproducts bounded? This is an important, and difficult question. We consider randomized variants of this question, finding non-classical characterizations. For dyadic interval I, let hI = h 0 I be the L-normalized Haar function adapted to I, the superscript 0 denoting that it has integral zero. Set h I = |hI |, the superscript 1 denoting a non-zero integral. A (cla...

متن کامل

Multilinear Paraproducts Revisited

We prove that mutlilinear paraproducts are bounded from products of Lebesgue spaces L1 ×· · ·×Lm+1 to Lp,∞, when 1 ≤ p1, . . . , pm+1 <∞, 1/p1+· · ·+1/pm+1 = 1/p. We focus on the endpoint case when some indices pj are equal to 1, in particular we obtain the new endpoint estimate L× · · · ×L → L1/(m+1),∞. In memory of Nigel Kalton

متن کامل

Bilinear Paraproducts Revisited

Boundedness properties for bilinear paraproducts on several function spaces are presented. The methods are based on the realization of paraproducts as bilinear Calderón-Zygmund operators and the molecular characterization of function spaces. This provides a unified approach for the study of paraproducts, recovering some know results and establishing several new.

متن کامل

Composition operators acting on weighted Hilbert spaces of analytic functions

In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and  observed that a formula for the  essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators  are investigated.

متن کامل

Uniform Estimates on Paraproducts

We prove uniform L estimates (Theorem 1.1) for a family of paraproducts and corresponding maximal operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal de Mathématiques Pures et Appliquées

سال: 2022

ISSN: ['0021-7824', '1776-3371']

DOI: https://doi.org/10.1016/j.matpur.2021.11.007